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CHARACTERISTIC PROPERTIES AND EXACT SOLUTIONS

OF THE KINETIC EQUATION OF BUBBLY LIQUID

UDC 532.591+517.948A. A. Chesnokov

The paper considers a kinetic model for the motion of incompressible bubbles in an ideal liquid that
takes into account their collective interaction in the case of one spatial variable. Generalized charac-
teristics and a characteristic form of the equations are found. Necessary and sufficient hyperbolicity
conditions of the integrodifferential model of rarefied bubbly flow are formulated. Exact solutions of
the kinetic equation for the class of traveling waves are derived. A solution of the linearized equation
is obtained.
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Introduction. Recent studies [1–5] have developed a kinetic approach to studying the potential motion of
an ideal liquid with gas bubbles based on a statistical description of the interaction of a large number of bubbles.
The equations obtained taking into account the collective interaction of bubbles are similar in structure to the
Vlasov equation, well known in plasma physics. The kinetic models are derived using the system of Hamilton’s
ordinary differential equations describing the motion of individual bubbles. To obtain this system of equations, one
need to know the kinetic energy of the liquid written as the quadratic form of the bubble velocity:

T = 2−1
∑
i,j

ut
iAijuj

(ui the velocity of the ith bubble) [6], whose coefficients are determined by the liquid flow potential in the region
between the bubbles. Assuming that all bubbles are spherically imponderable particles of constant radius and using
an asymptotic expansion of the solution of the Laplace equation in a small parameter (the ratio of the bubble
radius to the mean interbubble distance), Russo and Smereka [3] approximately calculated the kinetic energy T

and the Hamiltonian H = 2−1
∑
i,j

pt
iBijpj (pi = ∂T/∂ui is the generalized momentum of the ith bubble) of bubble

motion. Using the system of Hamilton’s equations for the coordinates and the momenta of bubbles and the method
of deriving the Vlasov equation, they obtained a kinetic equation that describes the evolution of the one-particle
distribution function. Studies of [7, 8] focus on studying the characteristic properties, finding symmetries and
conservation laws, and deriving exact solutions of the one-dimensional Russo–Smereka model. A kinetic model of
motion for compressible bubbles in a liquid was proposed by Teshukov [5].

A drawback of the Russo–Smereka model is that an the approximately calculated Hamiltonian H of the
system of equations is not a function of fixed sign. The paper of Herrero et al. [4] has a number of distinctions
from [3]. In [4], in particular, the bubble velocities are more accurately expressed in terms of generalized momenta
[4]: uk =

∑
j

Bkjpj . The matrices Bij of 3× 3 size are derived from the equation

∑
k

AikBkj = Iδij , Aij =

{
(τρl/2)I, i = j,

(3τρl/4)(a/|rij |)3(I − 3rij ⊗ rij/|rij |2), i 6= j.
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Here I is the unit matrix, δij is the Kronecker symbol, τ and a are the bubble volume and radius, respectively, ρl is
the density of the liquid, a⊗ b is the notation of the dyad, and rij = xi − xj (xi are the coordinates of the center
of the ith bubble). In this case, the Hamiltonian of the system is a nonnegative function. As a result, the following
kinetic model of rarefied bubbly flow was proposed [4]:

ft + divx(Hpf)− divp(Hxf) = 0, t > 0, x ∈ R3, p ∈ R3,

H(t,x,p) = 2−1|p+∇ϕ|2, divx((1 + λρ)∇ϕ(t,x)) + λ divx j(t,x) = 0, (1)

ρ(t,x) =
∫
R3

f(t,x,p) dp, j(t,x) =
∫
R3

pf(t,x,p) dp.

Here f(t,x,p) is the density of bubble distribution over the Cartesian coordinates x and the bubble momenta p
at time t and λ is a constant (all values are considered dimensionless). In the steady case, the curves H = const
are integral curves of system (1). By virtue of the inequality H(t,x,p) > 0, the integral curves in the phase space
(x,p) are closed and bounded. Below, we consider Eq. (1) in the one-dimensional case.

1. Generalized Characteristics and Hyperbolicity Conditions of the Kinetic Equation. In the
case of one spatial variable, Eq. (1) becomes

ft + (p− l)fx + (p− l)lxfp = 0, (1.1)

where

l =
λj

1 + λρ
, ρ =

∞∫
−∞

f dp, j =

∞∫
−∞

pf dp.

The distribution density f is considered a nonnegative function that is finite or rapidly decreasing as |p| → ∞.
Equation (1.1) is close in structure to the one-dimensional Russo–Smereka equation

ft + (p− λj)fx + λpjxfp = 0, j =

∞∫
−∞

pf dp

and is converted into this equation if we use the expansion of the function l(t, x;λ) in powers of λ, ignoring terms
of the order of λ2 and higher. Below, without loss of generality, we set λ = 1 (this is achieved by extension of the
variable f). In Eq. (1.1), we convert to the Eulerian–Lagrangian coordinates x and ν by substituting the variable
p = p(t, x, ν), where the function p is a solution of the Cauchy problem

pt + (p− l)px = (p− l)lx, p
∣∣∣
t=0

= p0(x, ν).

In the variables t, x, and ν from Eq. (1.1), we obtain the following system for the functions p and f :

pt + (p− l)(p− l)x = 0, ft + (p− l)fx = 0. (1.2)

Here

l =
j

1 + ρ
, ρ =

∞∫
−∞

pνf dν, j =

∞∫
−∞

ppνf dν.

The substitution is invertible if pν(t, x, ν) 6= 0. In this case, we can determine ν(t, x, p) and, after substitution into
f(t, x, ν), obtain a solution f = f(t, x, p) of Eq. (1.1). Below, we assume that the inequality pν > 0 holds.

Equations (1.2) belong to the class of systems with the operator coefficients

Ut +AUx = 0, U = U(t, x, ν), (1.3)

for which the notions of characteristics and hyperbolicity are generalized [9]. In this case, U = (p, f)t and A is a
nonlocal matrix operator acting over the variable ν:

A =

 (p− l) + (1 + ρ)−1

∞∫
−∞

(p− l)fν . . . dν −(1 + ρ)−1

∞∫
−∞

(p− l)pν . . . dν

0 p− l

 .
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Let B be a Banach space of the vector-functions ϕ = (ϕ1(ν), ϕ2(ν))t and the functions U , Ut, and Ux (dependence
on t and x as parameters) belong to B. It can easily be shown that A: B → B is a linear operator. We consider
the eigenvalue problem

(F , (A− kI)ϕ) = 0. (1.4)

The solution is sought for the vector functional F ∈ B∗ (B∗ is a space of functionals that is conjugate with B) acting
on an arbitrary vector-function ϕ ∈ B. The expression (F ,ϕ) denotes the result from the action of the functional
on a test vector-function. The action of the functional F on Eq. (1.3) yields the relation on the characteristic

(F ,Ut + kUx) = 0. (1.5)

According to [9], system (1.3) is hyperbolic if all eigenvalues of k are real and the corresponding eigenfunctionals
form a complete system, i.e., the set of relations on characteristics (1.5) is equivalent to Eqs. (1.3).

For system (1.2), the eigenvalue and functional problem (1.4) yields the following two equations for deter-
mining F = (F1, F2):

(F1, (p− l − k)ϕ1) + (1 + ρ)−1

∞∫
−∞

(p− l)fνϕ1 dν(F1, (p− l)) = 0,

(F2, (p− l − k)ϕ2)− (1 + ρ)−1

∞∫
−∞

(p− l)pνϕ2 dν(F1, (p− l)) = 0.
(1.6)

In this case, we used the independence of the components on the trial function ϕ = (ϕ1, ϕ2)t. We note that problem
(1.6) has a continuous spectrum of characteristic velocities kν = p(ν) − l, which correspond to the eigenfunction-
als F 1ν and F 2ν with the components

(F 1ν
1 , ϕ) =

ϕ

v
−
∞∫
−∞

v′f ′µ(ϕ′ − ϕ) dµ
v′ − v

, (F 1ν
2 , ϕ) =

∞∫
−∞

v′v′µ(ϕ′ − ϕ) dµ
v′ − v

,

(F 2ν
1 , ϕ(µ)) = 0, (F 2ν

2 , ϕ(µ)) = ϕ(ν)

defined on smooth trial functions. Here v = p(ν)− l and v′ = v(µ) (arguments t and x are omitted for brevity).
To define the discrete characteristic spectrum, we consider the case k(t, x) 6= p(t, x, ν)− l(t, x) in a region in

which f(t, x, ν) > 0. System (1.6) has the solution

(F1, ϕ) = −
∞∫
−∞

(p− l)fνϕdu
p− l − k

, (F2, ϕ) =

∞∫
−∞

(p− l)pνϕdu
p− l − k

,

where k(t, x) is a root of the equation

χ(k) = 1 + k2

∞∫
−∞

pνf dν

(p− l − k)2
= 0. (1.7)

Equation (1.7), defining the discrete characteristic spectrum of the operator A, has no real roots. Indeed, if f is
not a finite function, k does not belong to the real axis by virtue of the condition k 6= p − l. For the case of a
finite distribution function, this follows from the type of the function χ(k) and the inequalities f > 0 and pν > 0.
However, Eq. (1.7) can have complex roots, and for hyperbolicity of the system, one need to formulate conditions
of the absence of such roots.

Acting on Eqs. (1.2) by the eigenfunctionals F 1ν and F 2ν , we obtain the characteristic form of the system:

v−2(∂t + v∂x)p+ v−1(∂t + v∂x)ρ+ (∂t + v∂x)

∞∫
−∞

p′µf
′ dµ

p′ − p
= 0,

ft + vfx = 0.
(1.8)
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Obviously, model (1.2) does not reduce to the Riemann invariants, which are preserved along the characteristics of
the continuous spectrum, unlike the Russo–Smereka equations [7].

The hyperbolicity conditions for system (1.2) are formulated in terms of the complex function χ(z), or, more
precisely, its limiting values from the upper and lower half planes on the real axis

χ±(v(ν)) = 1 + v2

∞∫
−∞

f ′µ dµ

v′ − v
± πiv2 fν

vν
.

We note that the function χ(z) is analytical and has no poles in the complex plane with the real axis cut out. The
argument principle leads to the following lemma.

Lemma 1. On the solution p(t, x, ν), f(t, x, ν), Eq. (1.7) has no complex roots if the following conditions
are satisfied:

∆ argχ± = 0, χ± 6= 0 (1.9)

(the increment of the argument is calculated for ν varying from −∞ to ∞ and fixed values of t and x).
The lemma below specifies conditions under which the relations on characteristics (1.8) are equivalent to

Eqs. (1.2).
Lemma 2. Let the components of the vector-function S = (S1, S2)t be of the Hölder type in the variable ν

and the relations (F 1ν ,S) = 0 and (F 2ν ,S) = 0 and conditions (1.9) hold. Then, we have S ≡ 0.
Proof. It follows from the equation (F 2ν ,S) = 0 that S2 ≡ 0. In view of this fact, the equation (F 1ν ,S) = 0

can be written as

S1 − v
∞∫
−∞

v′f ′µ(S′1 − S1) dµ
v′ − v

= 0.

Converting to the integration variable v′, we obtain the singular integral equation

S1

(
1 + v

∞∫
−∞

v′f ′v′ dv
′

v′ − v

)
− v

∞∫
−∞

v′f ′v′S
′
1 dv

′

v′ − v
= 0. (1.10)

We reduce Eq. (1.10) to the conjugation problem of the theory of analytical functions [10]. We introduce the
function

Ψ(z) = z

∞∫
−∞

v′f ′v′S
′
1 dv

′

v′ − z
.

Using the Sokhotskii–Plemelj formulas, one can calculate the limiting values of the function Ψ(z) on the real axis.
It can be easily verified that the solution of Eq. (1.10) is equivalent to the solution of the homogeneous conjugation
problem

Ψ+(v) = G(v)Ψ−(v), G(v) = χ+(v)/χ−(v), (1.11)

where G is a specified function and Ψ is the desired function. It is required to determine the analytical functions of
the complex variable in the upper and lower half-planes from the boundary condition on the real axis. By virtue of
satisfaction of conditions (1.9), the index of the conjugation problem is zero. In this case, according to [10], problem
(1.11) has only a trivial solution in the class of functions vanishing at infinity. From Eq. (1.10), taking into account
that Ψ = Ψ± = 0, we obtain the equalities Re (χ±S1) = 0 and Im (χ±S1) = 0. Since χ± 6= 0, we require that
S1 = 0. Thus, the completeness of the system of eigenfunctionals is proved. Lemma 2 is proved.

The above lemmas and the definition of hyperbolicity leads to the following theorem.
Theorem 1. Conditions (1.9) are necessary and sufficient for hyperbolicity of system (1.2) if the functions

p and f are differentiable and pν and fν are Hölder functions in the variable ν (pν 6= 0), and f and fν vanish as
|ν| → ∞.

2. Traveling Waves. A solution of the form f = f(ξ, p), where ξ = x − Dt, describes a traveling wave
propagating at constant velocity D. For this class of solutions, Eq. (1.1) takes the form

(p− l −D)fξ + (p− l)lξfp = 0.
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As an independent variable, it is convenient to use l (we set lξ 6= 0). Then, the traveling wave equation is written
as

(p− l −D)fl + (p− l)fp = 0. (2.1)

Equation (2.1) is integrated:

f = Φ(η), η = p2/2− (D + l)p+ l2/2. (2.2)

Let D > 0 (the case of D < 0 is similar, and for D = 0, the solution is easily constructed by the characteristics
method). Solution (2.2) takes constant values on the characteristics η = const [these lines in the plane of the
variables (p, l) are shown in Fig. 1].

Let us consider the Cauchy problem

f(l0, p) = f0(p), l0 =
(

1 +

∞∫
−∞

f0(p) dp
)−1

∞∫
−∞

pf0(p) dp. (2.3)

Conditions (2.3) ensures that the traveling wave is continuously contiguous to the specified steady-state, spatially
homogeneous solution f0(p). As can be seen from Fig. 1, for l > l0, the solution of the Cauchy problem is uniquely
determined from the initial data in the domains Ω1 and Ω2, whereas in the domain Ω3 bounded by the curve
η = s0 = −D2/2−Dl0, the solution is found from additional equations. We note that the Cauchy problem (2.3) is
incorrect for l < l0 because the function f0(p) cannot be specified arbitrarily (the characteristics intersect the line
on which the Cauchy conditions are specified at two points). Let us find the solution of problem (2.1) and (2.3) in
a certain interval l0 6 l 6 l1.

We determine the function Φ(η) on the line l = l0 for p > p∗ = l0 +D and p 6 p∗. We denote the values of
the function Φ on these intervals by Φ+ and Φ−, respectively. Formulas (2.2) and (2.3) yield

Φ+(η) = f0(l0 +D +
√

2η +D2 + 2Dl0), Φ−(η) = f0(l0 +D −
√

2η +D2 + 2Dl0).

Using the known functions Φ±, from (2.2) we obtain the following solution in the domains Ω1 and Ω2:

f = Φ+(p2/2− (l +D)p+ l2/2), p > l +D +
√

2D(l − l0),

f = Φ−(p2/2− (l +D)p+ l2/2), p 6 l +D −
√

2D(l − l0).
(2.4)

To construct the solution in the domain Ω3, we transform the relation

l =
(

1 +

∞∫
−∞

f dp
)−1

∞∫
−∞

pf dp (2.5)

to an integral equation for the function Φ(η) in the interval η ∈ (s, s0), where s = −D2/2−Dl. For this, we convert
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from the integration variable p in Eq. (2.5) to the variable η. As a result, we obtain the integral Abel equation for
the function Φ(η) in the domain Ω3:

s0∫
s

Φ(η) dη√
η − s

= F (s). (2.6)

Here

F (s) = − 1
2
√

2
− s

D2
√

2
− 1

2

∞∫
s0

Φ+(η) + Φ−(η)√
η − s

dη − 1
D
√

2

∞∫
s0

(Φ+(η)− Φ−(η)) dη.

Solution of the Abel equation (2.6) yields

Φ(η) =
1
π

( F (s0)√
s0 − η

−
s0∫
η

F ′(s) ds√
s− η

)
.

In the domain Ω3, the solution is written as

f = Φ(p2/2− (l +D)p+ l2/2), (2.7)

where l+D−
√

2D(l − l0) 6 p 6 l+D+
√

2D(l − l0). Thus, formulas (2.4) and (2.7) completely define the solution
in the traveling-wave region.

Let us give two examples of constructing a traveling wave using the algorithm described above. In the first
example (Fig. 2), the initial distribution is a finite function of the form

f0(p) =


hp, 0 6 p 6 1,

h(2− p), 1 6 p 6 2,
0, otherwise.

In the second example (Fig. 3), we have

f0(p) = ρ0(2πT )−1/2 exp (−(p− a)2/(2T )).

In this case, the solution can be obtained in explicit form

f = ρ0(2πT )−1/2 exp(−(p2 − 2(l +D)p+ l2 +D2 + 2Dl0)/(2T )), p /∈ (p1, p2),

f = Φ(p2/2− (l +D)p+ l2/2), p1 6 p 6 p2,

Φ(η) =
√

2
πD2

√
s0 − η −

ρ0√
2πT

exp
(
− D2 + 2Dl0 + 2η

2T

)(
erf
(√s0 − η

T

)
− 1
)
,

p1 = l +D −
√

2D(l − l0), p2 = l +D +
√

2D(l − l0).

In Figs. 2 and 3, curves 1 show a plot of the initial distribution function; curves 2 correspond to the solution for
fixed l > l0.
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From the traveling wave equation (2.1), it follows that ρ = ρ0 +d−1(l− l0) and that the bubble concentration
increases in the wave region. This explains an abrupt increase in the function f (see Figs. 2 and 3). In this case,
rotational motion of the bubbles occurs in the traveling-wave region. Indeed, the trajectories of bubble motion are
defined as solutions of the system dl/dt = p− l −D and dp/dt = p− l. In the domain Ω3, the quantity p− l −D
changes sign, and at some points, the bubble velocity coincides with the wave velocity.

3. Solution of the Linearized Kinetic Equation. We linearize Eqs. (1.2) on the steady-state, spatially
homogeneous solution p = p0(ν), f = f0(ν). As a result, for small perturbations, we have the system

pt + (p0 − l0)(p− l)x = 0, ft + (p0 − l0)fx = 0. (3.1)

Here
l =

1
1 + ρ0

∞∫
−∞

(pp0
νf

0 + p0pνf
0 + p0p0

νf) dν − l0

1 + ρ0

∞∫
−∞

(p0
νf + pνf

0) dν,

l0 =
j0

1 + ρ0
, ρ0 =

∞∫
−∞

p0
νf

0 dν, j0 =

∞∫
−∞

p0p0
νf

0 dν.

The characteristic form of system (3.1) is obtained by linearizing relations (1.8). Using the notation

W (t, x, ν) =
p(t, x, ν)
(v0(ν))2

+

∞∫
−∞

pµ(t, x, µ)f0(µ)− p0
µ(µ)f(t, x, µ)

p0(µ)− p0(ν)
dµ

+
1

v0(ν)

∞∫
−∞

(p0
νf + pνf

0) dν −
∞∫
−∞

(p(t, x, µ)− p(t, x, ν))p0
µ(µ)f0(µ)

(p0(µ)− p0(ν))2
dµ (v0(ν) = p0(ν)− l0) (3.2)

the relations on the characteristics for Eqs. (3.1) take the form

Wt + v0(ν)Wx = 0, ft + v0(ν)fx = 0. (3.3)

We consider the Cauchy problem p
∣∣∣
t=0

= p0(x, ν) and f
∣∣∣
t=0

= f0(x, ν). If the functions p0 and f0 are

specified, the function W0(x, ν) is known by virtue of (3.2). Integration of Eqs. (3.3) with the initial conditions
yields the solution

W = W0(x− v0(ν)t, ν), f = f0(x− v0(ν)t, ν).

To derive the solution of the initial equations (3.1), it is necessary to find the function p(t, x, ν) from the known
functions f and W . This is possible by solving a singular integral equation. Several simple transformations of
Eq. (3.2) yield the equation for p(t, x, ν) (dependence on t and x as parameters)( 1

v0
+ v0

∞∫
−∞

f0
µ(µ) dµ

v0(µ)− v0(ν)

)
p−

∞∫
−∞

v0(µ)f0
µ(µ)p′

v0(µ)− v0(ν)
= v0W −

∞∫
−∞

v0
µf
′ dµ+

∞∫
−∞

v0
µ(µ)f ′ dµ

v0(µ)− v0(ν)
. (3.4)

Let z = v0(ν) on the real axis. We denote ξ = v0(µ) and f̄0(ξ) = f0(µ) and introduce the complex functions

χ(z) = 1 + z2

∞∫
−∞

f̄0
ξ dξ

ξ − z
, Ψ(z) =

1
2

∞∫
−∞

ξf̄0
ξ p dξ

ξ − z
.

The function χ(z) coincides with the characteristic function defined in Sec. 2. The hyperbolicity conditions (1.9)
are formulated in terms of the limiting values of this function. Let conditions (1.9) be satisfied on the solution.
Using the Sokhotskii–Plemelj formulas, it is easy to show that the solution of the singular integral equation (3.4)
reduces to the solution of the inhomogeneous conjugate problem

Ψ+(z) = G(z)Ψ−(z) + g(z), G(z) = χ+(z)/χ−(z), (3.5)

where

g(z) =
πiz2f̄0

z

χ−(z)

(
zW −

∞∫
−∞

f̄ dξ +

∞∫
−∞

f̄ dξ

ξ − z

)
.
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If the hyperbolicity conditions (1.9) are satisfied, the index of the conjugation problem is equal to zero and in the
class of functions disappearing at infinity, solution (3.5) has the following form [10]:

Ψ(z) =
χ(z)
2πi

∞∫
−∞

g(ξ) dξ
χ+(ξ)(ξ − z)

.

The function p is found by the formula p(z) = (Ψ+(z) − Ψ−(z))/(πizf0
z ). After calculations and an inverse

substitution of variables, we obtain

p(t, x, ν) = v0(ν)
(
m(t, x, ν)χ(v0(ν)) +

∞∫
−∞

(v0(µ))2f0
µ(µ)m(t, x, µ) dµ

v0(µ)− v0(ν)

)
,

m(t, x, ν) =
1

χ+χ−

(
v0(ν)W (t, x, ν)−

∞∫
−∞

fp0
µ(µ) dµ+

∞∫
−∞

v0
µ(µ)f(t, x, µ) dµ
v0(µ)− v0(ν)

)
.

Thus, the functions f and p are determined and the solution of the linearized kinetic equation (3.1) is constructed.
Conclusion. The one-dimensional kinetic equation for a bubble liquid studied by Herrero et al. [4] was

analyzed theoretically. It was established that this equation reduces to an integrodifferential system, which is
generalized hyperbolic [9] under certain conditions. Exact solutions of the model were constructed in the class of
traveling waves. A solution is obtained to the kinetic equation linearized on a steady-state, spatially homogeneous
distribution function. Unlike the Russo–Smereka equation, which is similar in structure, this model has a Hamil-
tonian of fixed sign but obviously fewer symmetry properties: it cannot be reduced to the Riemann invariant and
nor has any infinite series of conservation laws.

The work was supported by the INTAS foundation (Grant Nos. YSF 2001/1-80 and 01-868) and the Russian
Foundation for Fundamental Research (Grant No. 02-01-06368).
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